GAN生成对抗模型
约 444 字大约 1 分钟
2024-08-11
GAN 的主要灵感来源于博弈论中零和博弈的思想,应用到深度学习神经网络上来说,就是通过生成网络 G(Generator)和判别网络 D(Discriminator)不断博弈,进而使 G 学习到数据的分布,如果用到图片生成上,则训练完成后,G 可以从一段随机数中生成逼真的图像。
- G 是一个生成网络,其输入为一个随机噪音,在训练中捕获真实数据的分布,从而生成尽可能真实的数据并让 D 犯错
- D 是一个判别网络,判别生成的数据是不是“真实的”。它的输入参数是 x,输出 D(x) 代表 x 为真实数据的概率,如果为 1,就代表 100% 是真实的数据,而输出为 0,就代表不可能是真实的数据
训练GAN需要达到纳什均衡,有时候可以用梯度下降法做到,但有时候做不到。我们还没有找到很好的达到纳什均衡的方法,所以训练 GAN 相比 VAE 是不稳定的
GAN 的目的是在高维非凸的参数空间中找到纳什均衡点,GAN 的纳什均衡点是一个鞍点,但是 SGD 只会找到局部极小值,因为 SGD 解决的是一个寻找最小值的问题,GAN 是一个博弈问题。
同时,SGD容易震荡,容易使GAN训练不稳定。因此,GAN 中的优化器不常用 SGD